Диффузионный потенциал. Трансмембранный градиент концентрации калия

Когда градиент концентрации равен нулю, процесс диффузии итти не может. Непременным условием диффузии является также проницаемость поверхности, через которую должен итти процесс диффузии. Когда поверхность непроницаема для частиц вещества, диффузия этого вещества итти также не может.[ ...]

При высоких градиентах концентраций химических веществ в воде происходит нарушение осморегуляторной функции жабр, что имеет важное значение для объяснения механизма действия многих токсикантов и используется в борьбе с болезнями рыб. Например, на этом основан гиперосмотический способ введения вакцин и лечебных препаратов.[ ...]

Суточный ход концентрации 03 у земной поверхности существенно отличается от равнинного. В течение года она снижается к середине дня. Глубина полуденного минимума достигает минимального значения 4-5 ppb в летние месяцы, зимой он слабо выражен. На рис. 4.10 представлены вариации изменений содержания 03 в течение суток для различных месяцев (с апреля по декабрь 1989 г. и с января по март 1990 г.). Специфические особенности такого изменения концентрации приземного озона связаны с горнодолшшой циркуляцией, активно действующей в теплое время года, положительным градиентом концентрации озона в нижней тропосфере, фотохимическими процессами, приводящими в условиях высокой солнечной освещенности при малом содержании NOx к разрушению молекул озона в дневное время. В ночное время падающий стоковый поток приносит богатый озоном чистый воздух из вышележащих слоев в тропосфере.[ ...]

Как известно, градиенты концентраций возникают не только в среде мембраны, но и в растворе. Обычно их пытаются устранить, применяя интенсивное перемешивание. Однако последнее не захватывает нернстовский диффузионный слой и концентрационный градиент в нем не удается устранить. Естественно, что в таких случаях теория должна учитывать влияние примембранной пленки раствора. Для количественного рассмотрения явления необходимо знать толщину этой пленки, которую оценивают методами гидродинамики, измерением диффузии и потенциалов или непосредственно, определяя критическую плотность тока в поле высокой напряженности, т. е. работая в условиях, близких к поляризации. Но если для оценки толщины примембранной пленки раствора используется явление поляризации, то это крайне вредит всему процессу электродиализа.[ ...]

К концу процесса, когда градиент концентрации приближается к нулю, т. е. когда концентрации выравниваются, в единицу времени в раствор переходит все меньше и меньше смолистых.[ ...]

Диффузиофорез - движение частиц, вызываемое градиентом концентрации компонентов газовой смеси. Это явление отчетливо проявляется в процессах испарения и конденсации.[ ...]

Диффузиофорез - движение частиц под влиянием градиента концентрации при отсутствии внешнего электрического поля. Он является аналогом электрофореза, но в отличие от него движущей силой перемещающихся частиц в жидкой фазе является не градиент электрического потенциала, а градиент концентрации растворенных веществ вдоль потока. Это явление было открыто и описано Б.В. Дерягиным и С.С. Духиным в 1964 г.[ ...]

Движущей силой процесса экстракции является градиент концентрации - векторная величина, определяющая направление диффузии. Диффузия включает молекулярную и конвективную составляющие.[ ...]

Для понимания механизмов угнетающего действия высоких концентраций Н+ на активный транспорт №+ определенный интерес, на наш взгляд, представляют соображения Г. Ульча . Он считает, что механизм транспорта ионов при pH воды 4,0 должен преодолеть резко возросший (в 25 тыс. раз) градиент ионов Н+ в сравнении с тем, что имеет место при pH воды 7,4. Такое чрезвычайно высокое увеличение градиента концентраций Н+ неизбежно должно затормозить активный транспорт ионов №+ из воды в кровь, поскольку нормальная работа ионных насосов происходит только при сопряженном выходе из организма во внешнюю среду определенных противоионов: для №+ - это Н+ и ЫН5, а для СГ - это НСОз. Правда, рыбы располагают еще одним, так сказать, резервным механизмом поглощения натрия с использованием в качестве противоиона 1МН4 (№+ = 1МН), тем более, что при закислении воды усиливается образование аммония и его выход из организма должен значительно возрасти. Однако при низком pH воды, т. е. при увеличении концентрации ионов во внешней среде, возрастает сопротивление транспорту аммония и он выделяется, вероятно, не в ионной форме, а в форме аммиака, который обладает более высокой диффузионной способностью . Таким образом, и дополнительный механизм поглощения №+ в обмен на [МН4 может быть заблокированным при высоких концентрациях ионов водорода в окружающей среде.[ ...]

Перемещение на большие расстояния, вероятно, не зависит от градиента концентрации вируса на пути перемещения. Скорее это быстрый случайный перенос инфекционного материала. На ранних стадиях системного заражения вирус, очевидно, может проникать через восприимчивые к инфекции ткани, не вызывая в них инфекции (см., например, ).[ ...]

При испарении с поверхности капли (или пленки жидкости) возникает градиент концентрации пара, но так как общее давление пара должно оставаться постоянным, происходит гидродинамическое течение парогазовой смеси (ПГС), направленное перпендикулярно к поверхности испаряющейся капли и компенсирующее диффузию газов к этой поверхности.[ ...]

Таким образом, перепое волов через мембрану может осуществляться против градиента концентрации с затратой энергии, т. е. путем активпого переноса.[ ...]

Диффузионный перенос в проточном реакторе почти всегда имеет место вследствие возникновения градиента концентраций по длине (см. рис. 2.41). Необходимо отметить, что механизм такого переноса не только молекулярный - поток вещества 03с1С/(]1 определяется через некий эффективный коэффициент диффузии Оэ (например, турбулентная диффузия). И если этот поток сопоставим с конвективным - Си (перенос вещества с потоком, движущимся со скоростью и), то становится очевидным, что его надо учитывать при построении модели.[ ...]

Движущей силой разделения смесей в основном является избыточное давление со стороны исходного потока или градиент концентрации разделяемых веществ.[ ...]

Эффективность процесса экстракции зависит от следующих факторов: величины поверхности взаимодействия между фазами, градиента концентрации извлекаемого вещества, скорости взаимного перемещения фаз, продолжительности контакта. Чем выше эти показатели, тем больше возрастают скорость процесса и полнота очистки.[ ...]

Поскольку магма представляет собой многокомпонентную систему, применение к ней модели чисто термической конвекции, либо конвекции, обусловленной градиентами концентрации вещества, далеко не всегда оправдано. Физически более вероятной в этих случаях является модель двухдиффузной конвекции . В этом виде конвекции “действуют” два потока: первый обусловлен градиентом температуры (диффузионный поток энергии), второй - градиентом концентрации вещества (или нескольких веществ, как, например, в магме). Оба потока взаимодействуют друг с другом. Простейший пример - нагревание снизу раствора солей с некоторым градиентом концентрации. В этой ситуации раствор “разбивается” на ряд горизонтальных конвектирующих слоев, в каждом из которых температура и содержание солей перемешаны. Слои разделены поверхностями, через которые тепло и соль переносятся за счет молекулярной диффузии.[ ...]

Установлено, что биохимическая среда сосняков и ельников пространственно неоднородна как в вертикальном, так и в горизонтальном направлении. Величина градиента концентраций терпеновых углеводородов в горизонтальной плоскости в среднем составила 0,3 мг/м3 (максимальная - 0,6-1,0 мг/м3), в вертикальной плоскости - 0,3-0,5 мг/м3. Неоднородность биохимического режима обусловлена, по-видимому, неодинаковым количеством зеленой биомассы, состоянием биогрупп подроста и дифференцировкой кроны на разнокачественные слои с преобладанием двухлетней хвои в средней части кроны, которая физиологически наиболее активна.[ ...]

При неподвижном хранении перенос паров с поверхности продукта в ГП происходит вследствие молекулярной квази-изотерми-ческой и изобарической диффузии за счет градиента концентраций паров продукта. При этом принимается, что в ГП на поверхности продукта располагается насыщенный парами слой паровоздушной смеси.[ ...]

Систематическое дистанционное зондирование фитопланктона на ходу судна впервые было проведено в 1980 г. , что позволило получить кривые пространственного распределения концентрации фитопланктона в поверхностном слое воды. Анализ этих кривых показал, что возможны резкие градиенты концентрации фитопланктона на расстояниях порядка нескольких километров (рис. 5, кривая I). Отметим, что такого рода резкие градиенты обычно остаются незамеченными, если измерения проводят по стандартной методике лишь на станциях. Для сравнения на рис. 5 приведена кривая 2, построенная по измерениям на станциях.[ ...]

Рассмотрим неподвижный слой жидкости толщиной к, контактирующий со слоем парогазовой смеси толщиной к и (ё - к) (рис. 1.8). При испарении в жидкости и парогазовой смеси возникают градиенты температур (области I и II), а в смеси -градиент концентрации пара испаряющейся жидкости (область II).[ ...]

В дозиметрах пассивного типа диффузия химических веществ осуществляется через стабильный слой воздуха (диффузионные дозиметры) или путем проникания вещества через мембрану согласно градиенту концентраций (проницаемые дозиметры). Дозиметры этих двух типов изображены на рис. 1.49.[ ...]

Поглощение питательных веществ клеткой может быть пассивным и активным. Опо связано с процессом диффузии и идет по градиенту концентрации данного вещества. Как уже рассматривалось выше(см. с. 46), с термодинамической точки зрения направление диффузии определяется химическим потенциалом вещества. Чем выше концентрация вещества, тем выше его химический потенциал. Передвижение идет в сторону меньшего химического потенциала. Необходимо отметить, что направление движения иопов определяется не только химическим, но также электрическим потенциалом. Ионы, обладающие разпоимепиым зарядом, могут диффундировать через мембрану с раяпой скоростью. Благодаря этому создается разность потенциалов, которая, в слою очередь, может служить движущей силой поступления противоположно заряженною иона. Электрический потенциал может также возникать в результате неравномерного распределения зарядов в самой мембране. Таким образом, пассивное передвижение иопов может идти по градиенту химического и электрического потенциала.[ ...]

Поскольку растворение газа является диффузионным процессом, то скорость его пропорциональна поверхности соприкосновения газа с жидкостью, интенсивности их перемешивания, коэффициенту диффузии и градиенту концентрации диффундирующего компонента в газовой и жидкой средах. Поэтому при проектировании абсорберюв особое внимание уделяют организации контакта газового потока с жидким растворителем и выбору поглощающей жидкости (абсорбента).[ ...]

Расчет коэффициента диффузии. Беспорядочное тепловое движение молекул газа является основной причиной его диффузии в жидкость. По сложившейся традиции "движущую силу" процесса определяют как разность концентраций газа насыщенной и ненасыщенной фаз, хотя в действительности совершающее броуновское движение молекулы не подвергаются действию дополнительной "силы" в направлении градиента концентрации. Однако статистическое перераспределение молекул газа неизбежно приводит к сокращению разности концентраций, что обусловливает постепенный перенос массы в направлении понижения концентрации.[ ...]

Факторами, которые влияют на флокуляцию практически одинаково в лабораторных и производственных условиях, являются время реакции (время пребывания), распределение энергии перемешивания, свойства раствора и концентрация реагентов. При этом, поскольку сопоставляются непроточная и проточная системы, сравнение времени пребывания оказывается затруднительным. Сложно определить и средний расход энергии на перемешивание на единицу объема реактора в процессах, зависящих от потока. Трудно также количественно отразить пристеночные эффекты, концентрационные флуктуации и градиенты концентрации. Можно ли пренебречь этими эффектами во все моменты времени, будет выяснено лишь после тщательной оценки конкретной ситуации.[ ...]

Мвх и (?„х - материальные и тепловые потоки, входящие в выделенный объем (покидающие объем потоки имеют отрицательное значение); входящие потоки могут быть как конвективными (течение реагентов), так и диффузионного характера (вследствие возникновения градиентов концентраций и температуры).[ ...]

Присутствие ММФ в препаратах НАД-киназы из скелетных мышц кролика было продемонстрировано также при фракционировании на колонке с сефадексом G-200 (3), а значения молекулярных весов олигомеров фермента были уточнены с помощью метода электрофореза в линейном градиенте концентрации полиакриламидного геля (ПААГ) . Результаты, полученные при исследовании фермента двумя указанными методами, показали, что в частично очищенных препаратах НАД-киназы присутствуют олигомеры фермента с молекулярными весами 31000, 65000, 94 000, 160 000, 220 000, 350 000. Наименее ассоциированной формой НАД-киназы является белок с молекулярным весом 31 000, который, по-видимому, можно считать субъединицей фермента на том основании, что после обработки додецилсульфатом натрия двух низкомолекулярных фракций, снятых с колонки (31 000, €5 000), и последующего электрофореза на электрофореграммах не был обнаружен белок с молекулярным весом, меньшим 30 000.[ ...]

Удачно дополняет метод биотестирования на дафниях биоте-стовый анализ с помощью простейших микроорганизмов - инфузорий-туфелек (Paramecium caudatum). Метод биотестового анализа водных проб основан на способности инфузорий избегать неблагоприятных и опасных для жизнедеятельности зон и активно перемещаться по градиентам концентраций химических веществ в благоприятные зоны. Метод позволяет оперативно определять острую токсичность водных проб и предназначен для контроля токсичности природных, сточных, питьевых вод, водных вытяжек из различных материалов и пищевых продуктов.[ ...]

Благодаря содержанию растворов солей, сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления. Например, давление в клетках животных (морских и океанических форм) достигает 30 атм и более. В клетках растений осмотическое давление является еще большим. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.[ ...]

Приведем существующую классификацию полупроницаемых мембран, применяемых при осуществлении процессов обратного осмоса и ультрафильтрации (рис. 6.36). Указанные мембраны могут быть; пористыми и непористыми, причем последние являются квази-гомогенными гелями, через которые растворитель и растворенные вещества проникают под действием градиента концентраций (молекулярная диффузия), поэтому такие мембраны получили название диффузионных.[ ...]

Хотя суша занимает только 30% поверхности земного шара, большую ее площадь занимает растительный мир, активно поглощающий газы из атмосферы. Растения могут поглощать атмосферные газы подобно неорганическим веществам без переработки или, что гораздо важнее, активно включать их в процессы метаболизма, создавая таким образом благоприятный градиент концентрации для дальнейшего поглощения. Хорошим примером является диоксид углерода, который загрязняет атмосферу, являясь основным продуктом сгорания углерода.[ ...]

Для ликвидации отходов широко используется почва, поэтому очень важен выбор типа почвы: с подходящей проницаемостью, размерами частиц и стабильностью; необходимо также поддерживать фильтрующие характеристики почвы с помощью соответствующего режима подачи отходов, так как любые антиокислительные условия в почве будут снижать скорость биодеградации. Первоначальные градиенты концентраций доноров и акцепторов электронов, кислорода и температуры приводят к расслоению микробной популяции, прежде всего к сорбции микроорганизмов, потребляющих органический углерод. После того как произошла сорбция, начинается процесс микробного катаболизма. Процесс захоронения отходов в почве дешев , но может возникнуть целый ряд сложностей, особенно зимой, из-за больших объемов фильтрующихся в почву вод, малого испарения и низкой микробной активности. Даже в наиболее благоприятных условиях может происходить накопление тяжелых металлов и образование относительно непроницаемого слоя уплотненной почвы из-за осаждения нерастворимых солей железа, марганца и кальция . Кроме того, высокие концентрации органических соединений и тяжелых металлов могут приводить к гибели растительного покрова , избежать которой позволяет только предобработка . Так, хотя распыление образующихся на свалке вод, на песчаных почвах, служащих источником кормовых трав, не оказывало на эти травы никакого вредного влияния, но в них накапливались оксиды кальция, магния и фосфора (V). Фильтрующиеся в почву воды свалок, обладая фитотоксичным действием, в то же время содержат необходимые для растений питательные вещества. Исследования Мензера показали, что при выращивании сои на песке с орошением такими водами наблюдается несбалансированность по питательным веществам и процесс нуждается в тщательной регуляции .[ ...]

Широтное распределение эмиссии (на рис. 3.6) указывает на промышленно развитые страны Северного полушария как на основные "поставщики" техногенного С02. Неравномерность распределения источников, а также особенности общей циркуляции атмосферы (существование замкнутых пассатных ячеек и внутри-тропической зоны конвергенции, см. рис. 1.5) служат причиной возникновения широтного градиента концентраций С02.[ ...]

В то время как некоторые участки темно-зеленого типа исчезают и в них репродуцируется ВТМ, другие участки инфицированного листа остаются почти полностью свободными от вируса в течение всей жизни листа. Темно-зеленые участки такого типа, по-видимому, не поддерживают репродукции ВТМ. Этот вывод можпо сделать на том основании, что, во-первых, при суперипфицировании этих участков ВТМ концентрация инфекционного вируса в них по увеличивается и, во-вторых, граница между желто-зелеными тканями с высокой концентрацией инспекционного ВТМ и темно-зеленым участком остается четкой в течение многих недель, несмотря на то что клетки обоих участков соединены плазмодесмами. В темно-зеленых участках вблизи границ с желто-зелеными тканями обнаружен градиент концентрации свободных частиц ВТМ, которые, как мы полагаем, диффундируют из соседних желто-зеленых тканей (фиг. 35).[ ...]

Однако практика показывает, что эти гербициды проникают в корни в сравнительно небольших количествах и поэтому вызывают только частичную гибель корневой системы; часть корней остается живой и способна давать новые побеги. Причиной этого является постепенная адсорбция и распад действующего вещества гербицида при его передвижении по проводящим тканям стебля . Чем дальше от места нанесения, тем ниже концентрация гербицида. В растении создается как бы градиент концентрации гербицида . В результате можно наблюдать, что у растений корнеотпрысковых сорняков, обработанных гербицидами, отмирают только надземная часть, корневище и некоторая часть прилегающих к корневищу корней, а дальше концентрация гербицида в тканях падает настолько, что он только частично повреждает, но не убивает корень . В наиболее отдаленные от корневища участки корня гербицид может не проникнуть совсем.[ ...]

Таким образом, реку можно сравнить с системой, находящейся в состоянии постоянного брожения и обладающей способностью к самоочищению, т.е. к удалению растворенного и взвешенного органического вещества со свойством поллютанта. Химические соединения, которые находятся Н воде или присутствуют в данных отложениях, влияют на водные биоценозы. В результате самоочищения возникает вторичный эффект - появление градиентов концентраций кислорода, питательных элементов и биологических субстанций.[ ...]

Очистка газовых выбросов с помощью жидких поглотителей состоит в контактировании потока загрязненного газа с поглотителем при последующем отделении очищенного газа от отработанного поглотителя. В ходе процесса загрязняющая примесь поглощается жидкостью. Абсорбция - типовой процесс химической технологии, который в технике очистки газовых выбросов часто называется скрубберным процессом. Движущей силой его является градиент концентраций на границе раздела фаз газ - жидкость. Процесс протекает тем быстрее, чем больше поверхность раздела фаз, турбулентность потоков и коэффициенты диффузии. Абсорбции посвящено много публикаций в литературе химико-техноло-гического профиля, и к ним следует обращаться за дополнительной информацией. Здесь же будут рассмотрены самые общие характеристики абсорберов, которые широко используются для удаления таких загрязняющих веществ, как сернистый ангидрид, сероводород, легкие углеводороды.[ ...]

Пользуясь выражением (8.1.36), легко оценить вклад каждой стадии в процесс диффузионного извлечения загрязнителя из грунта. Первый член в квадратных скобках определяет продолжительность диффузионной стадии пропитки (напомним, что если капилляры пропитываются в течение первой стадии, определяемой вязким сопротивлением, то в силу ее кратковременности продолжительность этой стадии можно не учитывать); второй член характеризует продолжительность стадии формирования градиента концентрации; третий - продолжительность собственно диффузионного процесса после завершения стадий пропитки и формирования градиента концентрации. Оценим теперь соотношение продолжительности стадий процесса в зависимости от условий проведения процесса выщелачивания загрязнителя.[ ...]

На рис. 2.3, а представлен неподвижный слой катализатора и вьиелены протекающие в нем процессы - составляющие общего процесса. Общий (конвективный) поток реагентов 7 проходит между зернами катализатора. Из потока реагенты диффундируют к поверхности зерен (2) и в поры катализатора (3), на внутренней поверхности которых протекает реакция (4). Продукты обратным путем отводятся в поток. Выделяющееся тепло переносится по слою (5) и затем от слоя через стенку - к хладагенту (б). Возникающие вследствие протекания реакции градиенты концентрации и температуры вызывают потоки вещества и тепла (7), дополнительные к основному конвективному движению реагентов.[ ...]

Изучение распределения и перемещений гидробионтов проводилось на водоемах и их участках, в разной степени подвергнутых антропогенному воздействию. В результате удалось документировать ряд новых поведенческих реакций рыб и беспозвоночных на распространение загрязняющих веществ. Даже в центрах залповых сбросов неочищенных токсичных вод часть особей местных популяций оказывается способной распознать опасность и попытаться уйти из зоны в более чистую литораль и притоки или сменить слой обитания, оторвавшись ото дна, где, как правило, отмечаются наибольшие концентрации вредных веществ. Наиболее быстро уходом в сторону убывания градиента концентрации загрязнителя реагируют мигрирующие (номадные) особи локальных стад рыб, уже через несколько часов или суток оказывающиеся вне опасности. Наименее страдают от загрязнения обитатели пе-лагиали, а наибольшая гибель особей происходит у оседлых немигрирующих группировок бентофагов.[ ...]

В тепловых источниках движение происходит за счет тепловой энергии, подводимой к источнику. Вредные выделения распространяются в виде направленного потока - конвективной струи, как правило, турбулентной. Динамическим называется источник, вредные выделения от которого распространяются в виде загрязненной струи, обладающей некоторой начальной скоростью истечения. Истечение струи происходит за счет избыточного давления внутри объема сосуда, аппарата за счет действия гравитационных сил или нагнетателя. В диффузионных источниках движение происходит за счет градиента концентрации газовой примеси. Направление и интенсивность распространения последней зависят от диффузионных характеристик вещества и турбулентности окружающей среды. Перечисленные типы переноса нередко сочетаются, например, тепловой источник выделяет и газовые примеси.[ ...]

О взаимосвязи роста завязи и роста зародыша и эндосперма можно судить по изменению скоростей роста этих различных частей плода на разных стадиях развития. В некоторых случаях кривая роста плода сигмоидная (например, у яблони), а иногда она имеет две волны (рис. 5.24). У персика изменение скорости роста перикарпа, очевидно, коррелирует с изменениями в скорости роста развивающихся семяи. Стимулирующее влияние развивающихся семян на рост тканей перикарпа, по-видимому, связано, по крайней мере частично, с влиянием образующегося в семенах ауксина. Развивающиеся семена являются богатым источником ауксина, и было показано, что в тканях плода существует градиент концентрации ауксина: наивысшая концентрация ауксина наблюдается в семенах, более низкая - в плаценте и самая низкая - в стенке плода. Такой градиент соответствует представлению о синтезе ауксина в развивающихся семенах и его движении из семян к другим частям плода.[ ...]

Гомогенные системы в воде представляют собой истинные (молекулярные и ионные) растворы различных веществ. Истинные растворы являются термодинамически устойчивыми системами и могут существовать без изменений сколь угодно долго. Несмотря на большое разнообразие соединений, образующих с водой растворы, многие свойства оказываются общими для всех растворов. Так, все растворы электролитов обладают способностью проводить электрический ток, а количественные зависимости, наблюдаемые при электролизе, справедливы для любых растворов. Направленное движение ионов или молекул в растворах происходит не только под влиянием разности потенциалов, но и вследствие градиента концентрации (диффузия). Диффузионный поток растворенного вещества при этом направлен из области с большей концентрацией в область с меньшей концентрацией, а поток растворителя - в обратном направлении. Для всех растворов нелетучих веществ в летучих растворителях характерна более высокая по сравнению с чистым растворителем температура кипения и более низкая температура замерзания. Повышение температуры кипения и понижение температуры замерзания будет тем большим, чем больше концентрация раствора.[ ...]

Для понимания природы и механизма парникового эффекта важно также знать, что вклад одного и того же компонента в общий поток излучения сильно зависит от его распределения в толще атмосферы. Проиллюстрируем это на примере трех главных "парниковых” газов - паров воды, озона и С02. Из рис. 3.1 видно, что полоса поглощения молекулы диоксида углерода с центром при 15 мкм в значительной степени перекрыта полосами водяного пара. Отсюда можно было бы сделать вывод, что роль С02 в поглощении радиации не столь уж и велика. Однако, если мы обратимся к рис. 3.3, на котором приведены полученные в ходе реальных наблюдений в январе 1972 г. вертикальные профили Н,0 и 03, то увидим, сколь велик градиент концентрации паров воды. Напротив, диоксид углерода довольно равномерно перемешан в слое воздуха от примерно 1 до 70 км. Следовательно, выше 2-3 км главным поглотителем восходящего тепловогоИзлучения подстилающей поверхности может оказаться именно С02, и это умозаключение подкрепляется представленными в табл. 3.2 результатами расчетов.[ ...]

Исследования времени диэлектрической релаксации и других свойств, упомянутых выше и зависящих от скоростей молекулярных движений, дают достаточно точные значения скоростей молекулярной переориентации и трансляции в жидкой воде. Общий метод таких исследований состоит в том, что прикладывается напряжение к жидкой воде и измеряется время, необходимое для того, чтобы жидкость пришла в равновесное состояние в присутствии напряжения, или в том, что напряжение снимается и измеряется время, необходимое жидкости для возвращения в исходное состояние равновесия. Для диэлектрической релаксации напряжением является приложенное электрическое поле, для самодиффузии - градиент концентрации изотопа, для вязкости - напряжение сдвига и т. д. Однако подобные исследования свойств воды, зависящих от скоростей молекулярных движений, не дают детальной картины движений молекул воды, и поэтому представляется вероятным, что прежде чем получить такую картину, необходимо дальнейшее развитие фундаментальной теории неравновесных процессов.[ ...]

Между поглощением из почвы воды и минеральных веществ существуют сильные взаимодействия, но по-настоящему жесткая корреляция между ними имеет место лишь при поглощении нитратов. Из всех основных элементов минерального питания растений азот в форме нитрат-ионов (N03”) перемещается в почвенных растворах наиболее беспрепятственно; эти ионы переносятся к поверхности корня общим потоком воды через капилляры. Нитрат-ионы обычно поступают к корню отовсюду, откуда поступает и вода. Вода же быстрее всего поступает к корню в почве, насыщенной водой до (или почти до) значения полевой влагоемкости, а также в крупнопористой почве. Стало быть, именно в этих условиях наибольшей подвижностью будут обладать и нитраты. Зоны пониженной ресурсообеспеченности (ЗПР) по нитратам бывают при этом весьма обширными, а градиенты концентраций нитратов вокруг корней - небольшими. Большие размеры ЗПР повышают вероятность перекрывания ЗПР, порождаемых отдельными корнями. При этом может возникать конкуренция (даже между корнями одного и того же растения): в самом деле, истощение ресурса одним органом начинает сказываться на другом органе лишь тогда, когда они приступают к эксплуатации ресурсов, доступных обоим, т. е. когда их ЗПР перекрываются. Чем ниже содержание доступной воды в почве, тем медленнее перемещается она к корням и тем медленнее поступают к поверхности корня нитрат-ионы. ЗПР при этом становятся меньше, а степень их перекрывания снижается. Таким образом, если воды недостает, то снижается и вероятность того, что между корнями возникнет конкуренция за нитраты.[ ...]

Мембранные методы отличаются типами используемых мембран, движущими силами, поддерживающими процессы разделения, а также областями их применения (табл. 26). Существуют мембранные методы шести типов: микрофильтрация - процесс мембранного разделения коллоидных растворов и взвесей под действием давления; ультрафильтрация - процесс мембранного разделения жидких смесей под действием давления, основанный на различии молекулярных масс или молекулярных размеров компонентов разделяемой смеси; обратный осмос - процесс мембранного разделения жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление; диализ - процесс мембранного разделения за счет различия скоростей диффузии веществ через мембрану, проходящий при наличии градиента концентрации; электродиализ - процесс прохождения ионов растворенного вещества через мембрану под действием электрического поля в виде градиента электрического потенциала; разделение газов - процесс мембранного разделения газовых смесей за счет гидростатического давления и градиента концентрации.

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделенные полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Активный транспорт - перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ .

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого против градиента концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Пассивный транспорт - перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (например, диффузия , осмос ). Диффузия - пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос - пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Существует три типа проникновения веществ в клетку через мембраны: простая диффузия, облегчённая диффузия, активный транспорт .

Простая диффузия

При простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2,N2,бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина ). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Облегченная диффузия

Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегченной диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегченной диффузии по сравнению с простой пассивной диффузией. Скорость облегченной диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегченная диффузия не требует специальных энергетических затрат за счет гидролиза АТФ. Эта особенность отличает облегченную диффузию от активного трансмембранного транспорта.

Градиент концентрации

Градиент концентрации

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделённые полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Определение

Градиент концентрации направлен по пути l , соответствующему нормали к изоконцентрационной поверхности (полупроницаемой мембране). Значение концентрационного градиента gradC равно отношению элементарного изменения концентрации dC к элементарной длине пути dl :

При постоянном значении градиента концентрации C на длине пути l :

Здесь C 1 и C 2 - начальное и конечное значение концентрации на длине пути l (нормали к изоконцентрационной поверхности).

Градиент концентрации может быть причиной переноса веществ, например диффузии . Диффузия осуществляется против градиента концентрации.

Единицей измерения градиента концентрации является величина м −2 , а также её дольные или кратные производные.

В научной литературе (биологии, химии и др.) достаточно часто данный термин встречается в значении степени различия, то есть не векторной , а скалярной величины , показывающей разницу концентраций между двумя ограниченными областями, что является грубой ошибкой. В связи с этим, говоря, например, о пассивном транспорте, указывают, что он осуществляется по градиенту концентрации, имея в виду по разности концентраций вещества, но это изменяет смысл термина, и потому такое его трактование неверно.

См. также

Литература

  • Антонов В. Ф., Черныш А. М., Пасечник В. И. Биофизика - М .: ВЛАДОС, 2000, С. 35. ISBN 5-691-00338-0
  • Трифонов Е.В. Психофизиология человека, 14-е изд. - СПб.: 2011.

Wikimedia Foundation . 2010 .

Смотреть что такое "Градиент концентрации" в других словарях:

    градиент концентрации - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN composition gradient …

    градиент концентрации - – разность содержания ионов K+, Na+, Ca2+ вне и внутри клетки (ионная асимметрия), что обеспечивает образование мембранного потенциала и регуляцию биоэффектов внутри клеток. Общая химия: учебник / А. В. Жолнин … Химические термины

    градиент концентрации - koncentracijos gradientas statusas T sritis fizika atitikmenys: angl. concentration gradient vok. Konzentrationsgradient, m rus. градиент концентрации, m pranc. gradient de la concentration, m … Fizikos terminų žodynas

    градиент концентрации примеси - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN impurity gradient … Справочник технического переводчика

    относительный градиент концентрации космических лучей - относительный градиент концентрации Вектор, направленный в сторону максимального увеличения концентрации космических лучей, модуль которого равен отношению производной концентрации в этом направлении к величине концентрации. [ГОСТ 25645.104 84]… … Справочник технического переводчика

    Эта статья о математической характеристике; о способе заливки см.: Градиент (компьютерная графика) … Википедия

    анимально-вегетативный градиент - ЭМБРИОЛОГИЯ ЖИВОТНЫХ АНИМАЛЬНО ВЕГЕТАТИВНЫЙ ГРАДИЕНТ – градиент чувствительности у еще не оплодотворенной яйцеклетки с выраженным анимальным и вегетативным полюсами (например, у птиц при отмирании яйцеклетки изменения происходят вначале на… … Общая эмбриология: Терминологический словарь

    Теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов (См. Термодинамика… … Большая советская энциклопедия

    Необратимый перенос массы компонента смеси в пределах одной или неск. фаз. Осуществляется в результате хаотич. движения молекул (мол. диффузия), макроскопич. движения всей среды (конвективный перенос), а в турбулентных потоках также в результате… … Химическая энциклопедия

    МКБ 10 E … Википедия

Что такое концентрация? Если говорить в широком смысле, то это соотношение объема вещества и количества растворенных в нем частиц. Данное определение встречается в самых разнообразных отраслях науки, начиная от физики и математики, заканчивая философией. В данном случае, идет речь об употреблении понятия «концентрация» в биологии и химии.

Градиент

В переводе с латыни, это слово означает «растущий» или «шагающий», то есть это некий «указующий перст», который показывает направление, в котором возрастает любая величина. В качестве примера можно использовать, допустим, высоту над уровнем моря в разных точках Земли. Ее (высоты) градиент в каждой отдельной точке на карте будет показывать вектор увеличения значения до достижения самого крутого подъема.

В математике этот термин появился только в конце девятнадцатого века. Его ввел Максвелл и предложил свои обозначения этой величины. Физики используют данное понятие для того, чтобы описывать напряженность электрического или гравитационного поля, изменение потенциальной энергии.

Не только физика, но и другие науки используют термин «градиент». Это понятие может отражать как качественную, так и количественную характеристику вещества, например, концентрацию или температуру.

Градиент концентрации

Теперь известно, а что такое концентрация? Это которая показывает долю вещества, содержащегося в растворе. Она может высчитываться в виде процента от массы, количества молей или атомов в газе (растворе), доли от целого. Такой широкий выбор дает возможность выразить практически любое соотношение. И не только в физике или биологии, но и в метафизических науках.

А в общем, градиент концентрации является которая одновременно дает характеристику количеству и направлению изменения вещества в среде.

Определение

Можно ли подсчитать градиент концентрации? Формула его представляет собой частность между элементарным изменением концентрации вещества и длинной пути, который придется преодолеть веществу для достижения равновесия между двумя растворами. Математически это выражается формулой С = dC/dl.

Наличие градиента концентрации между двумя веществами является причиной их смешивания. Если частицы движутся из области с большей концентрацией в меньшую, то это называется диффузией, а если между ними находится полупроницаемое препятствие - осмосом.

Активный транспорт

Активный и пассивный транспорт отражает движение веществ через мембраны или слои клеток живых существ: простейших, растений, животных и человека. Этот процесс проходит с использованием тепловой энергии, так как переход веществ осуществляется против градиента концентрации: от меньшего к большему. Наиболее часто для осуществления такого взаимодействия используется аденозинтрифосфат или АТФ - молекула, которая является универсальным источником энергии в 38 Джоулей.

Существуют разные формы АТФ, которые располагаются на мембранах клеток. Энергия, заключенная в них, высвобождается при переносе молекул веществ через так называемые насосы. Это поры в клеточной стенке, которые выборочно поглощают и откачивают ионы электролитов. Кроме того, существует такая модель транспорта как симпорт. В этом случае одновременно транспортируется два вещества: одно выходит из клетки, а другое в нее попадает. Это позволяет сэкономить энергию.

Везикулярный транспорт

Активный и включает в себя транспортировку веществ в виде пузырьков или везикул, поэтому процесс называется, соответственно, везикулярным транспортом. Выделяют два его вида:

  1. Эндоцитоз. В этом случае пузырьки образуются из мембраны клеток в процессе поглощения ею твердых или жидких веществ. Везикулы могут быть гладкими или иметь каемку. Такой способ питания имеют яйцеклетки, белые клетки крови, а также эпителий почек.
  2. Экзоцитоз. Исходя из названия, это процесс противоположный предыдущему. Внутри клетки есть органеллы (например, аппарат Гольджи), которые «упаковывают» вещества в пузырьки, а они, в последующем, выходят через мембрану.

Пассивный транспорт: диффузия

Движение по градиенту концентрации (от высокой к низкой) происходит без использования энергии. Выделяют два варианта пассивного транспорта - это осмос и диффузия. Последняя бывает простой и облегченной.

Основное отличие осмоса в том, что процесс перемещения молекул происходит через полупроницаемую мембрану. А диффузия по градиенту концентрации происходит в клетках, имеющих мембрану с двумя слоями липидных молекул. Направление транспорта зависит только от количества вещества с обеих сторон мембраны. Этим способом в клетки проникают полярные молекулы, мочевина, и не могут проникнуть белки, сахара, ионы и ДНК.

В процессе диффузии, молекулы стремятся заполнить весь доступный объем, а так же выровнять концентрацию по обе стороны мембраны. Бывает так, что мембрана непроницаема или плохо проницаема для вещества. В этом случае на нее воздействуют осмотические силы, которые могут как сделать преграду плотнее, так и растянуть ее, увеличив размеры насосных каналов.

Облегченная диффузия

Когда градиент концентрации не является достаточным основанием для транспорта вещества, на помощь приходят специфические белки. Они располагаются на мембране клеток точно так же, как и молекулы АТФ. Благодаря ним, может осуществляться как активный, так и пассивный транспорт.

Таким способом через мембрану проходят крупные молекулы (белки, ДНК), полярные вещества, к которым относятся аминокислоты и сахара, ионы. Благодаря участию белков скорость транспорта увеличивается в несколько раз, по сравнению с обычной диффузией. Но это ускорение зависит от некоторых причин:

  • градиента вещества внутри и вне клетки;
  • количества молекул-переносчиков;
  • скорости связывания вещества и переносчика;
  • скорости изменения внутренней поверхности мембраны клетки.

Несмотря на это, транспорт осуществляется благодаря работе белков-переносчиков, а энергия АТФ в данном случае не используется.

Основными чертами, которые характеризуют облегченную диффузию, являются:

  1. Быстрый перенос веществ.
  2. Избирательность транспорта.
  3. Насыщаемость (когда все белки заняты).
  4. Конкуренция между веществами (из-за сродства с белком).
  5. Чувствительность к специфическим химическим агентам - ингибиторам.

Осмос

Как уже упоминалось выше, осмос - это движение веществ по градиенту концентрации через полупроницаемую мембрану. Наиболее полно процесс осмоса описывает принцип Лешателье-Брауна. В нем говорится, что если на систему, находящуюся в равновесии, повлиять извне, то она будет стремиться вернуться в прежнее состояние. Первый раз с явлением осмоса столкнулись в середине XVIII столетия, но тогда ему не придали особого значения. Исследования феномена начались только сто лет спустя.

Самым важным элементом в феномене осмоса является полупроницаемая мембрана, которая пропускает через себя только молекулы определенного диаметра или свойств. Например, в двух растворах с разной концентрацией, через преграду будет проходить только растворитель. Это будет продолжаться до тех пор, пока концентрация с обеих сторон мембраны не станет одинаковой.

Осмос играет значительную роль в жизни клеток. Это явление позволяет проникать в них только тем веществам, которые необходимы для поддержания жизни. Красная клетка крови имеет мембрану, пропускающую только воду, кислород и питательные вещества, но белки, которые, образуются внутри эритроцита, не могут попасть наружу.

Явление осмоса нашло и практическое применение в быту. Даже не подозревая об этом, люди в процессе засаливания пищи использовали именно принцип движения молекул по градиенту концентрации. Насыщенный солевой раствор «вытягивал» на себя всю воду из продуктов, тем самым позволяя им дольше храниться.

ГРАДИЕНТ (лат. gradiens, gradient шагающий) - векторная величина, показывающая направление наиболее быстрого изменения какой-либо функции. Понятием Г. широко пользуются в физике, физ. химии, метеорологии и других науках для характеристики скорости изменения какой-либо величины на единицу длины в направлении ее максимального роста; Г. в биологии - это количественное изменение морфол, или функциональных (в т. ч. биохим.) свойств вдоль одной из осей тела, органа или клетки на любой стадии их развития. Г., отражающий изменение какого-либо физиол, показателя (напр., интенсивности обмена веществ), называют физиол, градиентом (см. Градиент физиологический). При рассмотрении различных биол, процессов чаще встречаются с Г. электрического поля, концентрационным Г., осмотическим Г., гидростатическим Г. и температурным Г.

Градиент электрического поля в биол, объектах возникает в результате перемещения ионов внутри клеток и тканей или вследствие приложения внешнего источника электрического поля, напр, при гальванизации (см. Гальванизация , Электрофорез). Особенно большие значения Г. электрического поля имеют место на биол, мембранах. Так, при толщине мембраны ок. 10 нм и при изменении потенциала на 10 же градиент электрического поля на ней составит 104 в/см. Такое значительное изменение внутреннего электрического поля мембраны может привести к изменению ее поляризации и степени упорядоченности ее структуры. Существует пороговое значение Г. потенциала, при к-ром клетки генерируют потенциал действия (см. Биоэлектрические потенциалы , Возбуждение).

Концентрационный градиент в живых тканях возникает при условии наличия значительной разницы в концентрации ионов во внутренней и внешней среде, напр, высокая внутренняя концентрация ионов калия и низкая концентрация ионов натрия и хлора. Так, внутри волокна сердечной мышцы крысы содержится 140 мкмолей ионов калия и 13 мкмолей ионов натрия на 1 г внутриклеточной воды. Во внешней среде содержится 2,7 мкмоля ионов калия и 150 мкмолей ионов натрия. Концентрационный Г. ионов калия может быть объяснен существованием так наз. доннановского равновесия (см. Мембранное равновесие) по обе стороны биол, мембраны. При этом недиффундирующие анионы (напр., анионы белковых макромолекул) вызывают неравномерное распределение концентрации как анионов (напр., C -), так и катионов (напр., K +) по обе стороны мембраны. Существование концентрационного Г. ионов натрия не может быть объяснено доннановским равновесием, и перенос ионов натрия против концентрационного Г. объясняют существованием активного транспорта ионов (см.). Концентрационный Г. ионов может возникать также в результате протекания метаболических процессов. В итоге все процессы перераспределения ионов по разные стороны биол, мембраны приводят к возникновению потенциалов покоя (см. Биоэлектрические потенциалы).

Поступление и выход различных веществ из клеток происходит вследствие наличия Г. их концентрации. Скорость диффузии веществ определяется соотношением: dn/dt =Dq grad C, где n - количество диффундирующих молекул через поверхность q, D - коэф. диффузии, grad С - градиент концентрации; коэффициент диффузии определяется вязкостью среды и размером молекул вещества. Различие в скорости диффузии катионов и анионов (их подвижности) приводит к появлению диффузионного потенциала φ, который возникает на границе двух соприкасающихся растворов и описывается уравнением Нернста:

где U - подвижность катиона, V - подвижность аниона, С1 и С2 - концентрация электролита в двух соприкасающихся р-рах; R - газовая константа, T - абсолютная t°, n - заряд иона, F - число Фарадея. Диффузионный потенциал минимален, когда подвижность катиона и аниона равны или близки, напр, в случае раствора KCl. Поэтому этот электролит используется в биологии и медицине в качестве жидкостного проводника при гальванизации, электрофорезе и т. д.

Осмотический градиент характеризует разницу в величине осмотического давления (см.) в системе растворитель - раствор, разделенных полупроницаемой мембраной, т. е. проницаемой для молекул растворителя, но непроницаемой для растворенного вещества. Осмотическое давление при этом определяется как величина силы, к-рую нужно приложить к р-ру, чтобы остановить движение растворителя в сторону р-ра. При изменении осмотического давления во внешней среде клетки (напр., при его увеличении) вода будет поступать в клетку; скорость поступления воды при этом будет пропорциональна осмотическому Г. (между внутренней и внешней средой клетки). Так, для эритроцитов скорость проникновения воды составляет величину 2,5 мкм 3 /мсм 2 -мин-атм. Величина осмотического давления крови высших животных ок. 40 мм вод. ст. и составляет малую часть от всего кровяного давления. При нарушении белкового или солевого обмена изменяется также и Г. осмотического давления, напр, при его увеличении вода будет поступать в ткань, вызывая отек (см.).

Гидростатический градиент характеризует перепад давления между внешней и внутренней средой клетки, целого организма или отдельных его частей. Так, работа сердца приводит к появлению гидростатического градиента. В артериальной части кровеносной системы возникает положительное гидростатическое давление, в венозной - отрицательное (см. Кровяное давление). Гидростатическое давление может компенсировать осмотическое, что имеет место в капиллярах кровеносной системы. При росте гидростатического Г. (напр., при гипертензии) усиливается выход воды из кровяного русла в ткани, что может привести к возникновению отеков.

Температурный градиент, возникающий вследствие разности температур внутри и вне клетки, существенно влияет практически на все процессы жизнедеятельности. Так, скорость диффузии электролитов увеличивается на 30- 40% при повышении температуры на 10°. Примерно на столько же увеличивается электропроводность клеток. Перенос тепла пропорционален Г. температуры по обе стороны поверхности; при этом Q = -λgrad T, где Q - количество тепла, переносимого через теплопроводящую поверхность, λ - коэф. теплопроводности, T - абсолютная температура. Основным источником тепла в организме человека и животных являются экзотермические процессы, протекающие при работе мышц и внутренних органов. Рассеивание тепла (напр., с поверхности тела человека) может происходить также путем конвекции, излучения и испарения. Все эти процессы ускоряются с ростом температурного Г.

Библиография: Байер В. Биофизика, пер. с нем., М., 1962; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, М., 1968; Пасынский А. Г. Биофизическая химия, М., 1968.

Ю. М. Петрусевич.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.